Interpolation in the limit of increasingly flat radial basis functions
نویسندگان
چکیده
منابع مشابه
Interpolation in the Limit of Increasingly Flat Radial Basis Functions
Many types of radial basis functions, such as multiquadrics, contain a free parameter. In the limit where the basis functions become increasingly flat, the linear system to solve becomes highly ill-conditioned, and the expansion coefficients diverge. Nevertheless, we find in this study that limiting interpolants often exist and take the form of polynomials. In the 1-D case, we prove that with s...
متن کاملMultivariate interpolation with increasingly flat radial basis functions of finite smoothness
In this paper, we consider multivariate interpolation with radial basis functions of finite smoothness. In particular, we show that interpolants by radial basis functions in R with finite smoothness of even order converge to a polyharmonic spline interpolant as the scale parameter of the radial basis functions goes to zero, i.e., the radial basis functions become increasingly flat.
متن کاملTheoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions
Multivariate interpolation of smooth data using smooth radial basis functions is considered. The behavior of the interpolants in the limit of nearly flat radial basis functions is studied both theoretically and numerically. Explicit criteria for different types of limits are given. Using the results for the limits, the dependence of the error on the shape parameter of the radial basis function ...
متن کاملLimit Problems for Interpolation by Analytic Radial Basis Functions
Interpolation by analytic radial basis functions like the Gaussian and inverse multiquadrics can degenerate in two ways: the radial basis functions can be scaled to become “increasingly flat”, or the data points “coalesce” in the limit while the radial basis functions stays fixed. Both cases call for a careful regularization. If carried out explicitly, this yields a preconditioning technique fo...
متن کاملSurface interpolation with radial basis functions formedical
| Radial basis functions are presented as a practical solution to the problem of interpolating incomplete surfaces derived from three-dimensional (3-D) medical graphics. The speciic application considered is the design of cranial implants for the repair of defects, usually holes, in the skull. Radial basis functions impose few restrictions on the geometry of the interpolation centers and are su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2002
ISSN: 0898-1221
DOI: 10.1016/s0898-1221(01)00295-4